skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pitňa, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Parker Solar Probe (PSP) observed sub-Alfvénic solar wind intervals during encounters 8–14, and low-frequency magnetohydrodynamic (MHD) turbulence in these regions may differ from that in super-Alfvénic wind. We apply a new mode decomposition analysis to the sub-Alfvénic flow observed by PSP on 2021 April 28, identifying and characterizing entropy, magnetic islands, forward and backward Alfvén waves, including weakly/nonpropagating Alfvén vortices, forward and backward fast and slow magnetosonic (MS) modes. Density fluctuations are primarily and almost equally entropy- and backward-propagating slow MS modes. The mode decomposition provides phase information (frequency and wavenumberk) for each mode. Entropy density fluctuations have a wavenumber anisotropy ofk≫k, whereas slow-mode density fluctuations havek>k. Magnetic field fluctuations are primarily magnetic island modes (δBi) with anO(1) smaller contribution from unidirectionally propagating Alfvén waves (δBA+) giving a variance anisotropy of δ B i 2 / δ B A 2 = 4.1 . Incompressible magnetic fluctuations dominate compressible contributions from fast and slow MS modes. The magnetic island spectrum is Kolmogorov-like k 1.6 in perpendicular wavenumber, and the unidirectional Alfvén wave spectra are k 1.6 and k 1.5 . Fast MS modes propagate at essentially the Alfvén speed with anticorrelated transverse velocity and magnetic field fluctuations and are almost exclusively magnetic due toβp≪ 1. Transverse velocity fluctuations are the dominant velocity component in fast MS modes, and longitudinal fluctuations dominate in slow modes. Mode decomposition is an effective tool in identifying the basic building blocks of MHD turbulence and provides detailed phase information about each of the modes. 
    more » « less
  2. Abstract Small-amplitude fluctuations in the magnetized solar wind are measured typically by a single spacecraft. In the magnetohydrodynamics (MHD) description, fluctuations are typically expressed in terms of the fundamental modes admitted by the system. An important question is how to resolve an observed set of fluctuations, typically plasma moments such as the density, velocity, pressure, and magnetic field fluctuations, into their constituent fundamental MHD modal components. Despite its importance in understanding the basic elements of waves and turbulence in the solar wind, this problem has not yet been fully resolved. Here, we introduce a new method that identifies between wave modes and advected structures such as magnetic islands or entropy modes and computes the phase information associated with the eligible MHD modes. The mode-decomposition method developed here identifies the admissible modes in an MHD plasma from a set of plasma and magnetic field fluctuations measured by a single spacecraft at a specific frequency and an inferred wavenumber k m . We present data from three typical intervals measured by the Wind and Solar Orbiter spacecraft at ∼1 au and show how the new method identifies both propagating (wave) and nonpropagating (structures) modes, including entropy and magnetic island modes. This allows us to identify and characterize the separate MHD modes in an observed plasma parcel and to derive wavenumber spectra of entropic density, fast and slow magnetosonic, Alfvénic, and magnetic island fluctuations for the first time. These results help identify the fundamental building blocks of turbulence in the magnetized solar wind. 
    more » « less